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The steady two-dirmensional sink-type flow of a viscous, hezt-
conducting, perfect gu3 i3 inveatigated, An apuroximate solution of thia
prcblvea is given for the cmse of lerge Reynolds numbzs Re (cf, toe
definition given in the tzxt), In cbtaining the present suluiion the values
of Prardtl number and the ratio of the first and second viecocity
coefiicicnt may be arbitrary, The resuit shows that the solution has two
branches, both of physical significance, On the subsonic branch of the
solution the flow speed starts from the stagnation point at infinity, increases
monotonically fer decreasing radial distance axnd evervually terminates
with maximum speed at 2 cextain point ingide the inviscid sonic circle,
The solutions of the supersonic branch, which start with the maximum
speed at infinity, all contain cylindrical shocks, Within the shock the
flow spced assumes a minimum value and after the shock all solutione
tend asymptotically to the subsonic branch, In contrast tc the glanc shock,
the cylindrical shock strength is limited to the order O I?c'y’) ., and
the shock-thicknees, of (JfRe '/’) . The latter quantity implies that the
thickness of the region in which the viscous effects are important is
thinner, in order of magnitude, than that of ordinary boundary layer
(of O(R”) ), butis thicker than that of plane normal shock (of O(fe™')).
It is found that the entropy of the supersonic branch rises to a8 maximum
within the shock while for the subsonic branch, the entropy increases
monotonically with the radial distance. The total variation of the eniropy
across the shock is found to be of O(Rg'%) ., which is in general greater
than that across a plane normal shock (~ 0 (shock strength)’) . The

effect on the flow quanﬁﬁea due to the variation in viscosity cecefficients,

assumed to depend on the local temperature, is found to be at most of 0(&.“)
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Introduction

The prcblem of the steady cylindrical source-type or sink-type
flow has been of interest to fluid-dynainicists for several reasons. First,
it is known that the corresponding problem of an inviscid compressible
fluid has an exact solution containing a limit line of rather special type,
namely, the sonic circle (Ref. 1). To the exterior of this circle the
solution has two branch of values, one has its stagnation point at infinity
(subsonic branch) and the other starts with maximum velocity at infinity
{superscmic branch). DBoth of these two bSranches terminate at the limit
line with infinite velocity gradient. Therefore the viscous and heat-
conductive effects are expected to play an important role in continuing
the solution further inward. Second, because of its cylindrical symmetry,
this problem is one of the few nonlinear flows in more than one dimension
for which there is only one independent variable, the radial distance.
Consequsintly, the equations are simple enough to allow a unified discussion
of the various efiects. These are perhaps the reasons why this problem
has attracted the attention of several authors (Ref. 2, 3, 4).

In the first part of this investigation the Navier-Stokes equations
are given for the cylindrical sink flow of a viscous heat-conducting perfect
gas. The energy eguation is integrated once to give a first order
differential equation. Then, with some simplifying assumptions, the
qualitative properties of the solutions are discussed in detail for the case
of large Reynolds number Z . The definitionof Ze is 2 = _5_3_}(“‘:_:’: ’
where 7 =/ locates the inviscid sonic circle with sonic speed a., and

¢ .+ M, are the fluid density and viscosity coefficient at , =/ . These
{
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basic properties of the solutions thus comprehended serve for a useful
guide in our final calculation of the solution.

In the second part of this paper the detailed calculation of the
soluiion is carricd cut for the case of large Z& . 1t is found that there
is no single expression available for the solution uniformly valid in the
entire flow region. The calculation is then pe:;formed in three different
regions characterized by the length / andthe parameter 2 . For

r>rn +0f &-%) the approximate solution is ottained by using the
PLK method*. The result fails to be a good approximation for -~ too
closeto 7/ . Fer # -0(&-2/3) <r<< s+ 0(&-2/3) , a different
similarity rule for the variables leads to a system of cylindrical
transonic equations which governs the flow across the sonic region.
These equations can be integrated analytically for each of the different
order terms. The result shows that the solutions belonging to the super-
sonic branch all contain cylindrical shock-type flow in this transonic
region. In other words, these solutions gradually deviate away from the
inviscid supersonic branch, reach a minimum near =/ and then
approach asymptotically to the viscous subsonic branch. It is also found
that the shock strength is of Of Be.j') while the shock-thickness, of
O(fe‘%). results which are quite different from that of the plane normal
shock. Within this region, the thermodynamic variables satisfy the

isentropic relation up to the order ¢ ( Re 5 ) but deviate from it by a

* This terminclogy was introduced by'Prof. H. S. Tgien in a series of
seminars, held in California Institute of Technology in 1954, in which

the method due to Poincare — Lightill — Kuvo was discussed.

i@

A
L MRERT

s

T A b e




’ (v‘-w.‘;g_\‘qf#;a ¥

-
&
Las

.

-2,
quantity of 0(Zc /3) . The approximate solution for r <7 -0( Re¥) s

subsequently carried out. FKinally, the entropy variation of the fluid and
the effect due to variation in viscosity coefficients are discussed.

The corresponding source flow problem was previously solved,
using numerical method, by Sakurai (Ref. 3); a qualitative investigation
on this problem was later elaborated on many points by Levey (Ref. 4),
hy making use of some conventional methods in nonlinear differential :
equations. In the latter work, the orders of magnitude of many flow
quantities of interest were estimated. The present investigation on the
gink flow is not merely a special case of the cylindrical flow other than
the source type, but also presents an improved method superior to those
used in the previous works (e, g. Ref. 2,3,4). The powerful PLK-method
applied te the outer region yields a set of reiiable boundary values for
the transonic region ard thus enables all flow quantities of interest to
be calculated quantitatively in all regions. However, the previous works
should be credited here as to have led this author to a better understanding

{ this problem. The author is also indebted to Prof. H. S. Tsien for
suggesting the problem and to Profs. M. S. Plesset and C. R. DePrima

for their assistance onmany points.

1. The Fundamental Equations

Here we are concerned with the two-dimensional sink flow of a
viscous, compressible, heat-conducting fluid with polar symmetry. The i
only independent variable is the radial distance / from the origin. The H

radial velocity, « , is the only velocity component and is always non-
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positive for sink flow. lL.et f ' 9 7',//. ,/u. s AL R, Cv . C,o denote
respectively the pressure, density, absolute temperature, coefficients
of shear and bulk viscosity, heat conductivity, gas coastant, specific

heats at constant volume and pressure. The momentum equation is

du _  dp d du 2, d dru
LR A b s I (-1

and the energy equation is

5’“"—(""‘6 T)"'—[[ 7 /‘d,-f' ("‘- )(2 a)]} (1.2)

The continuity equation can be written in the following form if m denotes

the siank strength,

zll'gzu' =—-m

-
[
.
W

~—

The equation of state is assumed to be that of a perfect gas,
p=reT . (1.4)
Equation (1.1-1.4) are a system of nonlinear differential equations for
four variables % ,f i 57 and 7 if /t ,/(,i » A , and 6’, are known
functions of 7 .
To reduce the equations { > nondimensional form, the following

nondimensiénal quantities are introduczad:

. 2
@" ’ w=‘a/a/ y 6= 7;/71-3(‘1/“/ »

N

it
3
N
N
-

~
H

(1.5)

F=tp o F=th o AR KA

where quanities with the subscript 1 are ficticious quanties which would
occur at the iocal Mach number unity for nonviscouas and non-heat-

conducting gas. Thus, with ¥ equal to the ratio of specific heats,

-4.
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assumed constant throughout, the sonic speed @ at r=/
C :
- a“= /e , and zngar =m

The continuity equation then becomes

S;WF=/

is given by

(1.6)

(1.7)

Here w is always positive for sink flow, The equation of state is now

Fegé
Using Eq. (1.7), ard writing
’ £
A -/It =3RA ,

the nondimensional form of Eq. (1.1) becomes
w1 P v = > _0_/ W
F"-“??“"“{ [/‘c/f i -(’”’]*/“4;(,?)}

where o denotes the inverse of the Reynolds number

A 2A,

— X = = )

R ! $ar
>

(1.8)

(1.9)

(1. 10)

(1.11)

which will be considered much smaller than unity throughout this paper.

Stokes assumption on the viscosity coefficients states that

/
/-4(=0 , or 4:-:%

(1.12)

As this assumption does not agree with observations for many kinds of

fluid (cf. Ref. 5), condition (1.12) will not be imposed on the final

calculation of the flow field.

Again using £q. (1.7), the nondimensional form of Eq. (1. 2) can

; be integrated once to yield:

2
T dJ ,
kA (¢ £G&) +o+h Z ”"’] g

= € "

T y iy
e

{i.13)
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where (° denotes the Prandtl number

= X 1.14
¢ "; ( )

The integration constant on the right hand side of Eq. (1.13) is chosen
as shown above so that the limit solution for vanishing viscosity agrees
at large , wiin that of a nonviscous, iso-energetic flow.

Eliminating ,‘.7 in Eq. {1.10) by using (1.7) and (1. 8), and

introducing 7 =1?F as the independent variable, we obtain:

é
J”‘ ’ d & é __z‘r_,,‘.é ‘z_.v___ 7 ‘UJ“’ dﬂ"
The energy equation in terms of 7 is now
2 @ — o'.' p/ Jye 2 Y+t
_zr.f-E *dﬂ.[?‘j;’i‘/‘(/f“);; -/-ZAW'J =2W-—/—)- - (1. 16)

Eqs. (1.15) and (1. 16) are the two equations for two unknowns « and &
The boundary conditions for them can be determined by requiring that
they tend to their respective inviscid solutions as 7> c°° 8o that these i

two solutions can be appropriztely corapared later.

1.1 The Nonviscous Solution

The solution for sink flow of a compressible inviscid gas can be
literally obtained by putting o =0 in the above equations without

justifying the validity of such a simplification. Then the equations reduce

to
o rdey_ 8] i
0_7_,,,?[77_(_#)_?]_0 (1.17) |
and i
V-1 3 _ ¥+l i
oriZw = 22, (1.18)

The solution of this system of equations is known to be

S
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Towi(t o) T (1.19)

- = "
o € Z Z /
and
I A ©
8= ﬁ_’_?ﬁ-_’w) p=¢ =6"" . (1. 20)
The value of / can be expressed in terms of stagnation state as
A+
P m__ o _m  _ 41200 (1.21)
! mg 2may, zrzag ( )

where L] » and ¢4, g, are the isentropic stagnation pressure

[-]
and density. Equation (1.20) simply states the iscenergetic and isertropic

relations.

This inviscid solution w(r) given by Eq. (1.19) is plotted in Fig. 1.

rw

£La
T

h 7]

Y

T

Fig. 1. Graph of Inviscid Solution.

It gives no solution for r¢4 , butfor r>/4 , W is a double-valued

functionof 7 . On one branch ¥ tends to zero so that thermodynamic

variables tend to their stagration values as 7 - o= ; on the other branch

L) , and the thermodynamic

-

W tends to maximum speed attainable

e
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¥
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variables tend to zero as /- oo . They will be designated 28 subsonic
and supersonic branch respectively, Both of the branches terminate at
r=¢ with sonic speed (at which the fluid speed equals the local speed
of sound), The slope of the curve w() ,
4
- dNY-
o W - )T

==t g , (1. 22)
~ Ye! wi-1

is mnuch smaller than unity for 2>/ on both branches and consequently
viscous effects becon'lxe comparatively unimportant there. But as -/ ,
W/ ﬂ.‘%‘ becomes numerically unbounded, and thus the viscous force
nsar 7=/ should play a role as significant as those of inertia and pressure
forces.

Now this inviscid solution will be used as a guide to siudy the sink
flow of a real fluid governed by Eqs. (1.15, 1.16) for large values of #£e,
in the sense thai it is assumed that the limit of the viscous solution for
vanishing viscosity approaches the inviecid solution as /" -»cc, for both
subsonic and supersonic branches. By continuing these viscous solutions
backward in » where viscous effects become more and more prominant,
it is expected that the real fiuid, affected by viscosity and heat conduction,
will flow across this fictitious sonic circle, which ie a limit 'ine when
viscosity is neglected.

It may be remarked here that the equations for source flow of
rcal fluid can be obtained from (1. 15) and (1. i6} by changing the sign of
terms with factor & if w again represents the absolute value of the
radial speed, normalized relative to ¢ {cf. Ref. 4)j. Hence the

inviscid solutions for source and sink flow are identical, but their reapective

-8-

B e ot e —or




o
e

>

:}&gﬁwmnﬂmr

viacoue solutions will be shown later to have quite different features for

all r .

2. Properties of the Solution Curves

2.1 Approximate Differential Equation in the '""Phase Space’'.

In order to study the qualitative properties of the solution curves,
several assumptions will be introduced in this section to simplify the
analysis while most of the important features of the original system will
still be maintained. The Prandtl number, ¢’ , is assumed constant
because A and A have almost the same dependence on temperature.
In this section, A is also taken io be constant so that & =/ . When
the complete solution is calculated later, however, the assumptions
introduced here become unnecessary.

Equation (1. 13) can be integrated when the Prandtl number

a7 T 5.
v = '—z—z(,f ) ) ( g )
(under Stokes assumption, 4= -5’ , then 0= .4‘.;. - & |}, and the final
integral is
_.2(7 s
. - 2 - =3 - -4
§-[t LLrsak)w’] =R e” "= X () , (2.2)

where A is the integration coi.stant. The value chosen above for ¢ is
actually not far from experimental data { /" = 0.72 for air at standard
condition). As ¢ only appears in the coefficient of the derivative ;—/-;
in Eq. {i.i®}, it foliocws irom the thecry of diiferential equatione (Ref: 6

p. 142) that the solutions and ali their derivatives will be continuous in

0 for W>0 , =~oc0<0<o , Thus the assumption of choosing this

=)
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particular value of ¢ would merely lead to simplification of analysis
rather than material change of the solutions. If we further require by
physical argument that the deviation from the iso-energetic relation
expresaed by the term with the arbitrary constant A will not overwhelm
the right hand side terms for r<; , we may assume that A =0 . This
restriction, however, can again be relaxed when the complete solution

is discussed later. It will then be shown that A is indeed of the order
0(#) . Thus the particular solution with A=0 would still provide a good
approximation to the complete solution.

With A =0 , the energy relation becomes

9= L _Tlsriadyn’ . (2. 3)

Introducing this equation into Eq. (1. 15) and eliminating the

explicit dependence on 7 by the substitution

v__77_ =-rZ (2.9)
we obtain
aw‘V%—VV # V[/—(/—aa')wd] —W{/ -[,df(d")“]We} =0 (2.5)
where
g{-_-;_g(/fl)& 5 ;:TZ—: ’ a=%(%‘-’) . (2.5a)

The variable V 1is closely related to the fluid velocity gradient. Since
the terms ao and (2-/)& in the hrackets are merely corrections to
constant coefficients of O(/} , the properties of Eq. (2.5) would not be
altered if we had neglected these terms in order to simplify further

algebra, Thus the approximate differential equation

,,,wzv‘%’ £ V(W) ~w(i-gw) = 0 (2. 6)

-10-
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in the phaee space (W,V) is expected to exhibit all important features
of the original system Eqgs. {1.1% - 16jfor A=/ . The equation
similar to (2. 6) wac derived by Sakurai (Ref. 3) and later was discussed

in detail by Levey (Ref. 4) for source flow in a real fluid.

2.2 Properties of the Sclution Curves in Phase Space.

Equation (2. 6) is nonlinear and cannot be integrated. However,
several important features of the soiutions can be readily seen by study-
ing the properties of the vector field (w, V) defined by Eq. (2.6), such
as the type of its singular points, the curves of zero slope and zero
curvature together with some obvious isoclines.

(a) The curve of zero slope; the inviscid sclution.

Let C be the curve on which % given in Eq. (2. 6) vanishes,

C, is then given by

Yo MW f’:z”'a) : (2.7
which is also the inviscid solution in w-Y plane. The function V{¥)
given by Eq. (2.7) has a simple pole at w =/ (the fictitious sonic circle),
and two zeros at W=0 and W= P_é which correspond respectively
to the subsonic and supersonic branch at 7=oco0o. Near the origin, V(w)
has the following power series expansion

Vc, = vr[ /1t (/-,9)W'2+ (/—f)w‘f- (r-p) n"+,- . ] (2.8)

]
which starts from w=0 with slope unity. Near the point w= '6 & :

the expansion of V(w) is

2 2
_ 2P 143 1468 +f 2 sri0p+SP S
b - e o T - ] e
-11-
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where

£
z:vr—,ﬁ‘e

This branch of the curve ¢ starts from (g2°, o) with the slope ik

0

r , T

The curve ¢ divides the infinite strip og¢wg g ° into regions of
2

v 4 G |
’ ]
V<o : V,>o
!
|
: -3
!
| N T T S S RO S (O | J;f - W
e gy 0 o >
! 4
!
!
4 !
‘v'(u ' 7
| vV >o
]
!
g

. Fig. 2. Regions of Positive ind Negative Slope; Isoclines .

In this strip, g—: given in Eq. (2. 6) becomes infinite only on () v=o0,
=ty =
ocw<p? | and(i) w=0, V{0 . Besides, w=g>, Vo isalso

an isocline on which
LU
dw o
(b) Properties of the singular points.
The only singular points of Eq. (2.6) are (4,0) and (f‘i, o) .
The origin is a singular point of higher order. But if one sketches the
vector field (/%f 5 o/%ét) defined by

deaw’r = wirpn) -V (W)

-12-
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ood of the-origin witk

¢ wndex (cf. Ref.7

¥ ~o wkich either yields a trivial solution (V=0) o.
meaning (V4 0) . The other solution curve starts from t\

slope equal to +/ (which coincides there with the inviscid

By substitution of a power series into Eq. (2.6) (or by ordinar:

the asymptotic value, for small « , of this solution near the o:

\ iteration),
\igir. ia
found to be o
3 2
VX wt[(-g-a]w + [(1-p)~a (s-18) +4a | W

/ . 2 ] L] oo '31 .7
+ [(/-,o) —allit 68 - 367)r WA (£-257 070 W

The point ()d-r, 9) is & singular point of regular type.
neighborhood of x = wr- ﬂ-};.: 0, V=0 , Eq. (2.6) becomes

NV -z2pz ¢ (-pIV + PRY)

e oV # Q(Z,8)

s 8
in which 7 and @ ‘anish like Z+V ar x,V=0. Thus the

singularity (Ref, 7 pp. 37-44) is

(1) anodal point if o (FL, (forair, puf.a¢fT)
(2.12)
(ii) a spiral point if o > C;:;_’i

As the problem will be confined to the case o <</ , we shall only

-13-



cousider this singularity to be a nodal point, (which changes to a saddle
point for source flow, cf. Ref. 4 ). All solution curves passing
through this point will have at this point two distinct slopes which cin be

calculated from the secular equation of Eq. (2.11), namely,

2 -
=0 (2.13)

2p A-(1=p)

which has two unequal positive roots

..(/-,a)-(w # 06 , A = ;’f’%’ + 0@ . - (2.13a)

From these two eigen-values two eigen-vectors associated with Eq. (2.11)
at (z=0, V=0) can be obtained. By using this result it can be shown
that the solution curves passing through (1_.-*2 ‘:_Y =0) have near this

point the following parametric representation

At
Y- 2 z =¢ ¢
" {2:14a)
—{&:14a
,_p .8’ l,f
v (?--;__7)2: ce

with the slope

& v’m e ‘("i Z)ere
Jr - a&/,,g G2, el,\, ;\,,)t

(A, -A)¢
(2. 14b)

I

Since A>X, >0 , V,2Z>0 as Z-> ~o0, It also follows from the above
equations that there are infinite number of solution curves, corresponding

te arbitrary ¢ and G (¢ #0) which have the asymptotic value
v’
=4 ..i'; z + C/Z/z;'z near (z=0, Y=0) ; (2.15a)

-14-
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and, in addition, there is another solution curve passing throagh this

(, point (~C, =0) , of the value
V= ('—;:g = ,ﬁ_-f; )z near (z=0, V=0). (2. 15b)

The first group of solutions, given by E4. (2.15a), have the same limiting
value at =00 as the inviscid solution and hence represent the many
posgsible sink flows starting with maximum velocity w = F-é at r=-o0,
while the solution given by Eq. {2. 15b) is phyaically irrelevant. The

asymptotic value, for small « , of this physically significant solution

near the point Ww=g"is

vV %’;—{ [/f (’—‘3% + :::; + O(w’)] = L’?'_i[(/fa,a);#Z(sfu,e){Lz +0(or2)]

3(/

[(/-/-fold ) +2(5‘+f2’ﬂ +334 ).__ﬂ + 0(o )] }

, 0~ﬂ)/a~/ i
t + C/z/ . (near z =w- 4 "0) (2.16)

where C is an arbitrary constant. The last term follows from Eq. (2. 15a)}.
(c). The curve of zero curvature.

The second derivative of the solutica V¥ can he deduced from

Eq. (2.6),
14 3 o 2 2 2 :
AW v .i"_z.‘, = zv-v(lfpvf’)v +;’ (/-,aur)[V(/-vr)—w(/—,sr/)] " {2.17)
2
Let Cfe be the curve on which o vanishes, the equation for 62

is then, except where wV is zero, given by:

2V3-w(/f’dwe) vie = (/—,avrz)[V(/-w‘) -w(/ —pvrz)] =0 (2.18)

The function V_(w) satisfying this equation has the following properties:
(]

(i) ch has only one real value for eithey

(‘ -15-
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G
w =

(ii) The curve C.'z starts from the origin with slope equal to

{iii)

{iv)

4

Rsal
Ron 1

Y3

o<w'</+-—[('—’a) ] or w”)P‘l 4(:(_” A {2. 19a)
has three real values for
+$[2 “] ewe < f/* ) (2. 19b)
has two equal real values at
1‘-2‘1[-/—;—- 0(] 5 W = ,5—-"[/+;—(‘:(_—)ﬁ] and wf,/a—zl’ 2 (2. 19¢)

unity and has, in the neighborhood of the origin, the

following expansion:

\42 = wt[(r-p)-o] W + [¢-p) -a(s-18) Haz] w ‘

tepr-atn-rp 1‘3/92) +3d2(/7-/3)5) -z/ar3] Wit (2. 20) !
The curve 6:2 crosses w =/ at
2/3 i é‘
GO = () (24) MR )] (2. 21a}

with the slope
:’V z(,-,g) (2a) [/fo(o( )] {2.21b)

/

2 -k
When w'—ﬁ‘a ‘éz=o and V f‘? . Thus C, has

= doubie point at ( X 20) where the curve has two

different slopes —2£_//+ 0(a) and F J@)/ . Near
Pes [ / —=[1# 0@)]
this point these two branches of the curve (, has the

following expansions:

22
/ zﬁlr ar,ﬁ f—'rl' ]
b =il i ey 7 i o
z 2 2
fz—z??[(’*éﬁfﬂ)fU(d)]Lf- } (2. 22a)
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and
§ @  -p s 2
v R e
(* ¢ o Z‘{[l (-p)* +06)] + 0(")}
=32
where z=wW-pg 2R

(v) The slope of the curve C,

2
(dv _ e3pWIVE f-[(/fﬁ)-Zﬂﬂwvmi(/-pw”)(/-spw)
ﬁ‘é i V- aw(irpw i)V + L (1w )1 ~pw?)

becomes infinite at

Y3 2z _
ceregleen]® | v (e

and

/ /
-7 o . 2z
W’VP [/*m—_ﬁ)] » V'vé-f .

. / K}
(Vl) For w>»/, VCI-VPW'. V(:‘a—vé-FW °

(2. 22b)

(2.23)

(2.24)

The curve ¢, divides the (w-V) plane into regions of positive

il
!

and na2gative curvatures as shown in Fig. 3.

p
Y >0

"

" Fig. 3. Regions of Positive and Negative Curvature.
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(d). Sketch of soiution curves V(¥ ; definition of cylindrical shock,
The above discussions on isoclines, types of singularities, regions
of positive and negative slope and curvature, enable the solution curves
to be sketched.
First let us consider the solution curve starting from the origin.
Comparison »f Eqs. (2.8), (2.10), and (2. 20) shows that, for « and w
small,

Vw >V >V (w (2.25)
v 2

the difference (V, -V)~ Ok w)  while (V’Vce)“' 0(a3w7) . Thus the solution
/

curve V(w) lies in between ¢ and C, where the slspe and curvature

2

of V(w) are both positive. A careful study of the alope of V(v) and ¢,

(cf. Eqs. 2.6 and 2. 23) indicates that the sclution curve lies above ¢, for

w>0 . Hence V(w) is a monotonic increasing function of v with

increasing slope, passing through w=/ between the points V= :" and
Y= ( /-,a)%(ad)_‘}i , and finally ending up at w = 16’2‘ with the slope ;‘g = /7'_.
(cf. Fig. 4).

As previously shown in Eq. (2. 14}, there are infinite number of
solution curves starting from w = ﬁ-é » V=0 with the same slope /—f;_ i
Hewever, for (W-f-}L) and o both small enough, comparison of
Eqs. (2.9), (2.16) and (2. 22a) again shows that all these golutions satisfy
for small negative (W -,6-2") , the following inequality

V{w) < ch (w) < v (W) (2. 26)

as shown in Fig. 4.

LN

As w decreases from g <,V lfor every finite ¢ in Eq. 2.16)

decreases with increasing slope until it intersepts (, with a positive

2

-18-
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slope.
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_A%3,0) 15;’ 4*..—-'
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3\ 7

=G
c L0

Fig. 4. Sketch of the Solution Curves in the Phase Space .

For further decrease in w , the curve V

should lie above a

straight line with this positive slope at the puint of interception because

d
w3

is positive in this region,

Hence the solution curves will

eventually meet ¢ with zero slope, and from there on, for further

decrease in w , V

increases from negative values and late> crosses

V=0 with infinite slope at some point in between w=0 and w= p_z >

as can be shown by the method of bounding curves and will be made

Sl = 6

-19-
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exXplicit in our later calculation. Further extension of these solution
curves shows that V incr=ases with increasing w and finally approaches
asymptotically to the subsonic branch solution which starts from the origin.
There is a particular value of the integration constant (in Eq. 2.16), =say,
¢=¢g <o , for which the solution curve finally ends up at the origin with
in{inite slope. For c<¢, , the solution ceases to huve physical meaning.
On the other hand, the sclution curves for c¢>¢, have a very interesting

feature that these viscous solutions all exhibit the tranesition process frem

the "inviscid supersonic branch" toward the "'viscous subsonic branch".
Liet us consider, in particular, the solution with c=0 . It first inter-

cepts

> at (w,V) , sas, and then crosses V=0 at w=w, . Since

W, >/ and w </ (as will be shown later), the flow between these two
states may thus be defined as that of a 'cylindrical shock".* Inspired by
the result obtained in Egs. (2.21}, we see that the equation governing
such a cylindrical shock flow can be approximated by the following

similarity transformation

K’w -Fo~
w=/raw , V=a’V, c e (2.27)
T | {3) (4) .
* This terminology is adopted by both Sakurai and Levey' "/ to describe

such type of flow. The term "shock" is borrowed from its coaventicnal
meaning to indicate the transition from one branch to the other, though
the transition is rather different from that occurring in & plane normal
shock. Perhaps this terminology relates closer to the conventional
meaning of a =zhock for the constant C slightly greater than ¢, .
(cf. Fig. 4), because then the jump in w and the slcpe :,"i'—ﬁ in transiiion

become greater and the position of transition is {arther out from r=
(cf. Fig. 5). But since there is no adequate critericn to distinguish
onc from another value of C , we shall retain this name. Another
terminology, the dissipation layer, is suggested by Prof. H. 5. Tsien
to void this ambiguity and, in additior, to stress thé importancé of
viscous effects in this layer.

-20~-
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which will render all terms in Eq. {2. 6) equally important in this fiow

region, that is, for vaniahing o ,
V
IV

v = 2wV o+ (-p) . (2. 28)
Since this equation governs the flow of both branches near the sonic

speed, it may be called the '""equation for cylindrical transonic flow".

{e) Sketch of solution curves w(y) in physical space.

From the definitionof V , V(w)=- j—” , we have
L 7

=- —  +C .2

e Von (Zaea)
where the integral stands for an indefinite integral and
/ 2
¢ = L byl . 2.2
r-1 ?(3’#) sctdael

50 that 7 tends to its inviscid sclution for ] large.

Now for the subsonic branch, V(w)2o0 , hence ) is a
monotonically decreasing function of - w . Moreover, for same value of
w , Y(w) is less than ita corresponding inviscid solution (cf. Eq. 2. 25).
Hence, from Eq. (2.29),

Dl < T ) (2.3

In other words, at every 7 (w)w:s is slowed down from its inviscid

value due to the viecous effect.

/
For the supersonic branch starting from w=§ ¢, V(W <o

!

"2

for VQ EWLE , hence in this interva) 7 is a monotonically increas-

ing functionof w . At w=w, , (~ 7 = say).
dw

-

and, from Eq. (2.6)

dw = (v =l (/-8W) >0
(g}vrﬂfa (V”’”')\HO AW, =) > ’

=-Viw) =0

.21-
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therefore w(%) =W, is the only minimum of w on this branch. For
7<\ 72 8 7 decreases with increasing w , Furthermore, because of
the relation given in Eq. {2. 26}, we have

s (2> T (w) for w>/ , V<o . (2. 31)
v/ mnvrs

(£
The above properties of the solution enable the solution curves to
be sketched, as shown in Fig. 5. As the constant ¢ decreases from
zero, the minimum value decreases and the jump in w increases while

the jump takes place farther upstream.

ig. 5. Sketch of the Solution Curves in the Physical Space.

It follows from Eq. (2.27) that if we introduce

2 s
7-_-«; , W=/+4ta W, . - (2.32a)
then Eq. (2.28) becomes
P ]
s ~ W
— 2 W —— = = A
7 7t (=) (2.32b)

which is the equation govcrning the flow near w=/ , 7 =0 , .Integrating

22~
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this equation once, we obtain

gg o 7 = (1-F) & + Const. (2. 33)

This equation will be integrated and discussed in detail in cur final

caiculation.

3. Calculation of the Solutions by Using PLK-Method*

In this section we shall calculate vf(y) " 6(7) governed by the
original system of Eqs. (1.i5 - 1.16). Throughout this section N will
again be agsumed constant 0 that A =/ , but no restriction wiil be

imposed on ¢ and £ . Consequently tigs. (1.15, 16) become

3dw  r., o8 v 7 IND . 2
”5*7[";«7"9;7-9”]“?“ ,77‘2‘”)"” 18 1)
7-1 2 o I B ) AWty _ A
0+-—3—(/+6¢x)w +27“[¢,(/*1/) 47 +(3,/)d7 =7 (3.2)
where ;
4 _rH A
dmos VR g b= op B )

Using the PLK-method, ae described below, the generalization to the
case A =/((7') preszents no particular difficulty (cf. § 7).

It was seen before that even for a simplified version of these
equations, such as Eq. (2.6), conventional éerturbation method merely
leads to asymptotic solutions for small o near w=0 or w’=,€é (cf.
Eqs. 2.10, 2.16) because coefficient of v."l does not diminish ag 7 -»oce ,

This asymptotic result fails to be a good approximation to the required

[
solution as w deviates farther from w=0 or wrz,ﬂ‘e and becomes

% Cf the footnote in the Introduction.

-23-
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almost useless for calculations near w =/ . Now let us resort to the
PLK-methed, which is in essence to expand the solution in terms of
power series in o with coefficients as undetermined functions of a

parameter g

¢} 2 @
WE) =5 +taw(Eg) +raw (E)+r - N
98 = Wra) O ray @r (3. 4
@ “ 2 (@ :
6(8) =8(E)+ral(E)ta @ (E)r--- : R

-

The need of a parameter £ to represent the solutisn andthat w starts
with the term 5 are clearly suggested by our previous discussions.
Substituting these expansions into Eqs. (3. 1) and (3. 2), noting tha®
. v
v _ w’ ds _ &’ /;’ W w'7' (3.5)
57 5Ty Ty -
7 7 7 e Gr )

where prime stands for -% , and then equating sguzl powers of o ,

s
we obtain the zeroth crdcr cquations as follows:
E d Ly (o) '
(05 #(E) - 427107 = 0 362
(] Y. Y‘/ 2 (0)/
(o (- 22 -0

/
If ‘we choose 7(0) different from zero, then we have the zerothorder

solution

gey= 2 ) {3.7a)

and

7«:&) __@g 7-/ l’-’%’ 7"g ' . (3. 7b)

8

5

Vil




§ A

“9

The integration constant in Eq. (3.7b) has been so choasen that when
[
X—>9  £=ZW and 7 (w) agrees with inviscid solution.
The coefficient of « in the expanded equations gives the

following first order equations

Z N N R T
8"+ (r-ngw’= L 4 +—5—€—/;§— (3. 8a)

: NG g o 2r (" 0/ 3 -
-3;_[7(0)@0 *wo)rEl 7Y ]} = :Tlg [7°+£(") ] (3. 8b}
where
yr L ' 7 a y ¥-1
ok S BRI e oV N TS o (o 7 ] (3. 8c)

By substituting Egs. (3.7} and (3. 8aj into (2. 8b}), the terms in the curly

bracket can be rearranged to take the fcllowing form

/ 2
3’+/ W (’) YH © _ec £EU-PE)
L5 pE) ZL7 "] # 2 57 ok ey

4
vf, i 1+ (7 -3ﬁ)§ & 2
[ F (/_52)2 ] §

and finally Eq. (3.8b) turns out w0 be

Jd (o)/ (1) o) 2k '+4 ; (r-a)s-4) §
iy [ =(/-6) ]
/3 [7 7 -] [(/-52) iSf ey 4 £ (pE*-1)*
1=8 _(g-e)- VP _E (3.9)
where
PV S
¢=f° =5 7z
_25-
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Now in order to ascribe to w'’ a possibly lowest order singularity at
f £ =/ to improve the convergence of the series, we decompose Eq. (3.9)

as follows

4 @y G- -f) & 2= (/Lé)?dﬂ

¥ 7] = 7 ey [ = ] {3.10a)
0/7(/) g ?g
S =0 2 - : 3.10b
o’§ [(/_gz)z g (§3-/) ] ( )

The solution of Eqs. (3.10a,b) is thus

« =7 &
w (§) =- _/-_55_2__3 5@ f’ﬁ) [?lﬂ-: 12_/5 ' , {3.11a)
1)
7((5) = = e)[ o z}:/’;l’ £ '] ; {3.11b)
(, where
_(-a)(1-8) (1H+€)2f
A_"z_)af—_ , ’ﬁ[ -ey- ] | (3.11c)

" g ) 7 d
In the above first order solution, w’ and 7 " have singularities at £ =/

of the same order. Afier having determined wm . 9(%5) is then given
by Eq. (3. 8a)}.

Proceeding in a similar manner to obtain the second-order
ea_uati.ona by equating terms with o(z » we find that the resulting equations

2)
possess the solution of quite lengthy expression, in which 7( (€) starts

/
with the term 2(/ -ﬂ)/l—é) g‘)’ followed by terma of 0( 7 _;3)3) while

¢ W still can be made to be of (f —— ) . Therefore the final

3 ( ;2‘

X egolution can be expressed parametrically as follows:

. -26-
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3

: (1-p£% - 2 r_«
E or[ATf'? 3? *‘f /oﬂ’*’ Zz_’.;lfo\_,_g.) (3. 12a)

w(E)

76) = = [Lp¥ v 3t gl Bt - T || (-0 T+ 3 Aple-8Tl)

2 ‘,(/-,a)(/ -€)

<
ad C(
+ O, et plms = 0 p )
P N O D T
(-p)
+ ¢ 72*’ - Llg|*F (3. 12b)

where A , B , € are constants given in Eqs. (3. 1llc¢), (3.8c) and

¢ =0 for the solution starting from £ =0,

(3. 12¢)
_ € is arbitrary for the solution starting from £ = rs"zl
The vaiue of # is given by
68 = (LT E ) a(rn[A -c‘i— +38 2 f’ff’f‘) Ly| BT |
~bgty 5 E/(_-:f)] 2 0({/—5‘)2) : (3. 12)

Several interesting features of the above solution may be

mentioned here. (i) ¢=0 for ""z_olil) { =-:— if #=-4, cf. Eq. 3.8c).

With the value of ¢ and £ lying in the experimental range, ¢ is still
a amall number, .Consequently. the variation in ¢ and £ only
confribute a smail correction te the coefficients oi J(7) in the solution.
This fact confirms our previcus statement in § 2.1, ({ii) By substituting
Eq. (3.12) intc Eq. (2.2}, it can be found that the arbitrary constant A

is of O(x€) . ({(iii) The most important property of the above solution

“27-
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is that they do nct provide an approximate solution with uniform
accuracy over the interval of £ such that o<wg ,37 . As £

approaches unity, the higher order terms, especially in 7(5) , become
more important relative to the zeroth order term. More precisely, the

. ¥ % -5
solution is good onlv for 0¢§ ¢ /-K«x and /#+Ka SE < pz s K

%
being a constant of 0(/) . At & =/%X K« , all terms in the expression

[2c%
(34
i

for 7(5) become ¢
made sufficiently rapi by an appropriate choice of the value X .
In the subsequent calculation of the solution through the transonic
region, we shall only consider a particular solution with ¢ =0 , ¢=o
in £48. (3.12). Furthermore, it has been found convenient to take
K =2(7+/)K3 . With this valueof A , we obtain, from Eqs. (3.12a,b)}, 4

the following result:

{i) supersonic branch,

/
These values will serve for the boundary conditions imposed on the

% % ¥, Bl
- o > 3 dw o -
at w =/+ 2(71;-7) , 7=228/(f#)a” and o-,f-o.e/sm_l)%. ; (3. 13a)
(ii) subsonic branch
s - \lé }é 2/3 -\}L
at w =/—z(ﬁ) P = /.066 (¥#1) & and Z’.“.’=-o.47a;i‘?/? .{(3.13b) B
E ‘ Y] i

tranaonic solution to be obtained below. That the PLK method is
powerful in solving this problem can still furiher be stressed by the
following argument. As the first order term in the expression for w(§)
(cf. 3.12a) is quite unimportant in the aforementioned regions for £ , ,

one perhaps would try, instead of Eq. (3.4). a simpler expansion

(o) @«
7(w)=7(nr) +0('7(v/)7""' (3.14)
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and a similar expansion for 4 in terms of w . It can be shown that
(" the above expansion will vield a solution in which 7(0) is identical to
iaviscid sclution, but 7(/)(W) has, in addition t'o a simple pole at w=/,
a pole and a logarithmic singularity at W = ﬁ—f . Consequently the
assumed expansion (3. 14) becomes invalid focr 7 large on the supersonic

branch, and thus leads to an erroneous result.

4. The Solution in the Transonic Region

To obtain an approximate solution in the transonic region, as
discussed in § 2.2(d), (e) {cf. Egs. 2.27, 28 and 32) and also as
guided by the boundary conditions Eq. {3.13), first we distcrt the

independent variable by the transformation

2/
pea £, (4. 1)
{\ and then expand w, & into the form

wiE) = 7+ o w'lE) + vf%W‘f);) ra wm(g) Fooee 5 (4. 2)

/ / 4’;/ (. )
o(g) =/ +a(/’9”(§) for @ z)(f) *G’GJ(&) AE B . (4. 3)

With €20 (~20(+£)=/), Eqs. (3. 1) 2nd {3. 2) reduce to
[/-(/—oa)wz 9(.'.",«_ vrfl—[,o f(a-/)orj wz} =dw23/£f (4. 4)
7 79"
2

8= Zz"_’_%’_’(/féo()w + 0@?) (4.5)

Substituting £iqs. (4.1) - (4. 3) into Eqs. (4. 4) and (4.5), we obtain the

first order equation:

2w L
I w2 ) (4. 6)
: JE? /3 7

C -29-
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and the second order equation:

3 i 2w J ‘,‘ g, w C(r8)
-— 7 2 — (K W == 17 w (4.7
73 3 ) o7& LA e
The correction due to the terms with constants @ and 4 enters only
) 3 ) .
in w , & and higher order terms.

Now Eq. {4.6) can be integrated once to yield:

2
d () )
i w == 4.8)
7 7 s (

using
where the constant [, can be determined byAthc boundary condition (3. 13);

the result is,

-2/3
D, = 0.053 (¥#1) for the subsonic branch,
3 (4.9)
D, =-o0c¢r (¥r1) for the supersonic branch.
It ir convenient to rewrite Eq. (4. 8) in the following form
‘ B,y = vz (4.10)
dx 7
where
Ya 23
£ . (2 =
¥ = ( +/\ y & —(7;7) E , =z —(.2&/) D, 2 (4. 10a)
Now Eq. (4.10) is of the Riccati type, which, by the transformation
av
() = ._’. e 4.11
4 v oz e
can be reduced to a second order linear equation:
a"
Z:_:’ -(zrZ)v =0 (4.12)
The solution of this equation for (z+%)>0 is
s 7 3/:
N v o= MZ L-L,(S) *'V] (2)] ) —(‘t‘"z/) ) (4.13)
":: ; where [(Z} is the modifiad Bessel function of the first kind, and M , A
pF
?.
i;: ‘ -30-
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are the integration constants. By using Eq. {4.11), the solution oi
Eq. (4.10) is then

/3

\ Ly (2) + N T 5, (3)

ay(z) =(,3,§,'
A
) z)
{Z’(z * N (

where

Je
’

z2=% (2tx) and z*tz, >0

The constant # can be determined by using the condition (3, 13),

The continuation of Eq. {4.14) into the region =z+2z,<0 is

provided by
% % /5 Vel
21 @ =-Z J&) z’,(z):; J NZ)
% 5 -F 5

%

s ~4
2 L@=2 .é(;') 5 I, e = ; %(g)

wnere -a 7“:/2

&=2e€ =§-[(sz,)]

Consequently Eq. (4. 14) becomes

Vi
]({) = (32_g) ag (B) # NL2yy ) for z2+Z <O.
Sy (g)- /chy; &)

(4. 14)

(4, 14a)

(4. 15)

(4. 16)

To discuss the above solution, we first note that the imnviscid solution in

this transonic region is

}:Z

which has two branches for x >0 and gives no solution for x<c .

(4. 17)

Now before we determine the value of A for the corresponding viscous

solutions, we may also note that the general soiution, given by (4.14)

and (4. 16), is a semi-trancendental function of 5 and the second

integration constant A . It can be shown, from the properties of .g (2)
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at large 2 , that in £q. (4.14)
}l—a— + Ve as & — AN~

J(—,—-VZ as X —> oo N ==/ »

and J{ has a simple pole at a certain finite z for #<¢-/ (which is

of no physical significance). This result shows that the viscous solutions
tend to their respective inviscid values for z large in a manner which
implies again that (w =’6-é, 7=°°) is a nodal point (admitting more than
one value of ~ ) while (w=o0, 7=oo) is a saddle poinl (admitting only one
value of ¥ }. However, for ztz <0 , Eq. (4.16) shows obviously

that 0?(;) has infinite number of isolated simple poles at Z, where

the denominator vanishes, Since the properties of the solution curves

in the (w,V) phase space exhibit no such singularities, the solution (4. 16),
therefore, presents a good approximation tc the real flow only for 2

lying in the interval 0¢Z¢Z-$ <, where £, is the first pole and § s

a positive number, appropriately chosen such that J{(;;-S) is not yet too
large to void our approximation (4. 2).

Having obtained the first order solution W‘(I)(f) =(7§7)% ;( , the

second order equation {4.7) can be then integrated to yicid

-29(8) @)
W =&’ f;/x(g)ew o (4.18)

where
A 3
@) =j w'le) ok and  Y) = [WB] - () ek

) ¢}
It is obvious that w (§) is bounded wherever W (¢) is bounded.
Consequuntly, the approximation is good even if we only tzke ihe first

two terms in (4. 2) and (4. 3).
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( where 7s = 1oz (I';—/)K’“Z/J ("v \é = -/.05(,,-5_;)3/3 o

In crder to obtain some numerical results, we first determine

{. the value & in Eqs. (4.14), (4. 16) by using conditions {3. 13) to obtain

N=-0.585 for the supersonic branch,
(4. 19)

N = -7 for the subsonic branch.

With these valJues of 20 ard N (cf. 4.9 ard 4. 19), the solutions are
plotted in Fig. 6 (by using tables, Ref. 8) from which several interesting

results can be deduced as {ollows:

{1) For the supersonic branch, the transonic solution starts from

point A (cf. Fig. 6) with the coordinates

%5 y 5 2/
W srre(f) o, g tas(ld)a (4. 20)

’

After the solution curve passes through a point of inflection ¢

and then crosses the line =0 (w=1) at point 8 (cf. also Fig. 4)
/
% and

. 2 \23 -5 . ) o
(% = "L“(T,‘,) o N) , it reaches a minimum when it inter-
(]

\8T?)

2
cepts the curve ¥ =x at C where

“

. Vs "5 2/
) o

2 o
W = /—0.45(3.—*; x 5 72 = 02(12 . {4. 21)

It then increases from _w=W, to w=/ atpoint D where
Y3 2/3 23 -5 oy 2 2B -2
= -0 ) ~ = 0. — 3 _—= S— 0
Z,‘ OM(T) o ( ‘2-”"3(m) Xy am //(7#) o )
That is, there is an expansiocn wave following the cylindrical shock.

(ii) The thickness of the cy'indrical shock, ae dzfined in § 2.2(4), i=
- 5 s
- = / £ 2
A;v_%_% _2.7(72*)0( fn r- space , Ar r;Ay) (4. 22)

across which the velocity has a ''jump"

P
AW =W - W, =z.05<5,;7) o (4. 23)
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and

s v
2 3
Ww, = r s (P« (4.24)
Combining Eqs. (4.22) and {4. 23), we obtain
an =2 5.5 9 .
7 S N (4. 25)

Comparing these results with those ¢f a plane normal shock

(e.g. Ref. 9), we note first that the plane shock strength (~Aw)
is quite arbitrary while for a cylindrical shock, AW'-VO(“V").

The expression for shock thickness (i£q. 4.22) shows that

A7 ~ 0 (0(%) , although, combining Aw ., the expression (4. 25}
agrees with that of a plane shock (cf. Ref. J) within the order of
magnitude. The result (4. 25) differs, however, from l.evey's
result for the diffuse shock in a source flow (Ref, 4 Eq. 4.9), in
which he explaina the discrepancy as due to some degree of clhigice
of the definition of the shocki thickness. Our result also indicates
that the maximum velocity gradient inside a cylindrical shock is
of order “-’3 , (in contrast to Levey's result: O(«’) ), while
for a plane shock, the maximum gradient is (cf. Ref., 5) of

order (A.N)e ™  which reduces ta 0(d~“/") if AW~ O (a V’) :
The expression (4. £4) differs from tlk:e Prandtl relation of a

plane shock by a term of 0(0("&) which here agrees with Levey's
result (Ref. 4, Eq. 4.13). The differences between the present
results of cylindrical flow and those of one-dimensional planc
shock can perhaps ke realized by visualizing that the viscous
forces exertingon the surfaces rd and o+ of a fluid element

is indeed of juite different nature from those exerting in plare

shock flow, since in the former case, the normul atress acting

~-34-
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(‘ (iii)

(iv)

i

A T W TS, e St = 4

o the surface o wiil have a component in the radial direction,
On the subsonic branch, w is a monotonic decreasing function
73 2/
of P o Wi at point £ (cf. Figs. 6 and 4) where 7, =-/.oe(% o
. : o) 2 Vb -4
and the velocity gradient (3? e -V = -2 0/4(m) « (cf.
also Ea. 2,2la), which shows that the solution curve of the
subsoiic branch passes w=/ {ci. Iiy. &) slightly above the curve ¢, .

The thermodynamic variables in this flow region can be deduced

from Eq. (4.5), (1.3) and (1.4). That is, in the expansion (4. 3)

and
Py s ocya,a(')(gJ # a%}(s&) o
oE) =1+ e f('?g) # az/’g“)(f) Fooe 255
we have ,
6(’&) = -(¥-1) lyi—,)ﬁ;@) {4.27)
and
o4 Yg‘”) == am (4. 28)

where ;((f) is given in Eqa. (4.14) and (4. 16). The values of ?m

27 e

(5, ve, 7 b3

starts with compresusion and is then followed by an expansion

and

wave, while the subsonic branch expands continuously, Eg. (4. 28)
states simply that f; > f and ¢ satisfy the isentropic relation
up to O( d%’). This implies that the entropy variation, if any,

2
+ -
acroes this region must be of order at least o 7 .
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5. The Solution in the Inner Supexsonic Region

The above transonic solution shows that the supersonic branch
flow approaches asymptotically to the subsonic branch and for 7 <Y
both branches have supersconic local speed. We shali proceed to find
the solution ifor 7< Ve Let us consider first the continuation of the

subsonic tranch. For the sake of convenience, we shall take the point

in Fig. 6 as the boundary condition such that

. 2/3 A
g ztont(G5) a”? l
<‘/7)" i (5.1)

and (7"';)5 = 0.985 n/)z/'? '2/" J

To obtain the solution for 7<% » one can try the following expansion

Yo 2
= = - L+
ﬂ; / > }2 Aae<_§7) o )

=
w 6? + 2
7(1) a’7 )+¢/(L)*d7(z;)+ (5.2)
9(z) = 6“2) + a6 » -

which is to be substituted into Eqs. (3.1) and (3.2). However, by noting
the boundary condition (5.1}, 2 more convenient method to approximate

the solution can be carricd sut by letting

of -5 -5
v=_;7.=ga3 4 (/z)orzf for t=w-i5>0 (5. 3)
where
2/ 2 2
g =rot(3=) a:a.eaf(r,- , G, =\E (1+¥F) -(5. 3a)

so that the conditions (5. 1) are satisfied and, in addition ( ;—-) will

2

take ihe value %ﬁ at w _T' P {cf. § 2.2a). integrating (5.3) and

using Eq. (5.1), we ctiain
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24, Yz
0'

/34,0' —/'t
, for £ >0 (5. 4

This solution is in good agreement with the Eq. {4.16) forx Te>72 %

I

It can be seen at once that as w-» / (the maximum velocity at which
I

&= ), or z‘->)d Y 5 7 approaches its smallest value
% a/,
T T =3 (B {5.5)

-
'm t]

in which the assigned valuez of ¢, , ¢ , ¢ have been used. Thus we sece
that the flow supposedly terminates itself at a distance of ( ( 0(2/3 ) to
the inner aide of 7:0 » beyond which there is no solution to our present
system of equations. To search iurther for the posgsibilities whether
one still could obtain the solution of physical reality for 7 < T » ODE
would face some rather dubious situations. For instance, near 7= 7'" ,

( ‘ the density, temperature and pressure all become so low ihat the validity

i of the equation of state for perfect gas (1. 4) is questionable. Besides,

the fact that ithe viscous atresses reach the magnitude of the ﬁuid pressure
near %= 7”‘ sets a likely limit as to the applicability of the Navier -
Stokes equation (1. 1) and aiso raises a question as to whether Burnett's
higher viscous terms (Ref. 10, p. 271) should be ¢mployed to overcorne
the present difficulty. Of course, it would seem plausible to continue
our sclution further inward by assigning appropriate values to the
arbitrary constant C {2.1¢). Neverthelens, it ia still impossible to
bring the flow to 9 =-co (r=0) on account of the singularity that g¢u ~ r’
near =0 (cf. 1.3). To clarify these rather vague points is beyond the

scope of this oaper, although suchk clarification is certainty desirable.
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6. The Entropy Variation

We define .§ to be the specific entropy,

Tds =c/,o/7-3,’-# (6.1)

then the energy equaiion (1. 2) can be written as
g7u (./:’:f = aw{A éwa’r) ] (6. 2)

where ‘d is the viscous dissipation function, which in this case is,

B =2peep @S (F ] gxpE 2 (6.)
The above definition of .§ of a fluid element is clearly for an open system
since the heat exchange by conduction, and hence a net flow of entropy,
occurs with the neighboring clements. Thus Eq. (6. 2) merely expresses
the energy balance, in terms of 5§ , of the iluid element — a system
not isolated, in the thermodynamic sense, from its surroundings. The
znalysis of formulating the second law of thermodynamice for the fluid
flow case by mzking the system closed has bezen investigated in some
detail by Tolman and Fine (Ref., 11} and discussed later by Curtiss and
Hirschfelder (Ref. 12) from the point of view of statistical mechanics.
Their idea is in essence to state that the change AS in the entropy cf a
system should be constituted of not only the entropy carried into the
system due to conduction of heat energy, equai to dv{ %,— ;rad 7‘) pe:
unit volume, but also the net incrcase in entropy produced by irreversible
processes taking place inside the system. Following Toiman's notation,

we may thus write
DS - Dy e
g(__t. ), = 5) = Jw(.i__;rm/ 7‘) . (6. 4)

In the present case, Eq. (&.4), after combining with (6. 2), becomes
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2) = X (gt 7) + (6.5}

As we are only interested in the qualitative features of our later results,

we simplify these equations by using the assumptions

/"-=/a//‘/ =/, /(’=0 5 4,6 = constant ""=;'3" . (6.6)
Then the nondimensional form of Eqs. (6.2) anfl (6.5) are respectively
& o_u_ — 4y ! - W _ =
-5 7 <R {(1_,)0,7 ( # W } (6. 7
where
= S/, {6.7a)
and
8 {dd - ) a8 dw? w ¥ adw 2
VIR W N7 e B

Though the sign of the terms on the right hand side of (6.7) is in general
indefinite. the value of the right hand side terms of (6. 8) is, however,
positive definite. Therefore (J)!.r E increases moaotonically along
the fluid flow, as predicted by the second law for a closed svstem,
Subtracting Eq. (6.8) from (6.7), we obtain

(&) 5854

which can be integrated to yicld

4 =4+ g IR0 (6. 9)
wr 3 0’7

4

where the consiant of integration is so chosen that both 4 and 4;_,__. -

tend to 4

as y->oo, 4, being arbitrary.

In order to se: that 4 of the shock type flow reaches a maximum
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near w =/ , we substitute Eq. (. 3) into (6.7) and obtain

8 di _ &Y< /dw o
ﬁ;i—s_dw 0_7_2+;?__w) ; (6.10)

This equation shows that for 7 outside the transonic regioun, the

2
variation in 4 is at most of O(«) . Within the transcaic region, f/d_‘;’
being of O(«”') , overwhelms the rest of the terms in the bracket znd

hence (6. 10) reduces to

8 0'1 _47" 2/_2!. ‘a/“ZA’
¥ 5% i (17 0¢a*)) . : (6. 11)

It then follows that ./ assumes its maximum value at the point where

the curvature of w=w(7,\ :urve vanishes ( 47”:=0 at point G in
Fig. 6 and at this point ;7‘.‘2 is less than zero). However, from !6.9),
the quantity 4 ¢ -‘-‘3! & /L; @9 does not have an extremum in the
entire flow region. The above result is very much the same as that of a
plane shock (e. g. Ref. 9), the solution of which shows that the velocity
has a point of inflection at W=/ where the entropy ia also maximum.
Integrating Eq. (6. 10) with the aid of Eqs. (3.1) and (3. 2) under

condition (6. 6), we obtain

4d-4 = /?[0 (wF)”-')] = 1?97‘(3’—/)(@»'7‘7) (6.12)
where 4 =L (R/G)

sothat 4—~ 4 as ~ —>°° ., This equation is actually the definition ‘ "
of 4 usually given for a perfect gas. Substitution of the solution (3.12) !
}

into (6. 12) shows that
AS ~ Of«x) for 7> o () o (6.13)

Within and around the traugonic region, we subsatitute the soiution (4. 1)-
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(4. 3) into (6. 12) and simplif{y the expansion, then we obtain

: %
d-q = az”(y-/)(%.’)j[z-f] + Oixt) (6. 14)
where
ho- %oz
ey ) e

and the value Z =}(z) is given by Eqs. {4.14), (4. 16) and also plotted in
Fig. 6. Equation {6.14) is consistcnt with the fact that 4 = /Jo = const.
along the inviscid solution (5(2=x . The variation in J along supersonic
and subsonic branches of our solution follows directly from the data shown
in Fig. 6. The cecult is plotted in Fig. 8. As 7 decreases along the
supersgonic branch, the entropy ./ first increases till it reaches the
maximum ,Jo +1.21 oti/3 1;1()‘/3(#/) 2t point G , then decreases and
latez assumes once again the value 4 (the valuc of 4 at 7 zao ) at

@ is minimum there. After that 4 decreases

point ¢ whezre W
rapidly with further decrease in 7 and eventually tend to -oco as

the flow solution terminates. On the subsonic branch, .4 dacreases
monotically with decreasing 7 - However, by substituting Eqs. (6. 14)
and (4. 3) into (6.9), it can easily be shown that (4,’.”_) increases
monotically with decreasing 7 and the variation in (4{-”_,‘ is of order
O(a) . Consequently, the result that J - - as 7= P : can bz
explained by visualizing from Eq. (6.9) that é (@6) decreases
beyond all bounds as 7”%& . Physically, this probably implies that
the flow ie rather far from its equilibrium condition due to the large

velocity gradient, inducing a rapid decrease in temperature which even

the important heat conduction in this region can not compensate.

-4] -



7. The Case when / Proportional to Temperature

In our previous investigation, ya /L' and A were assumed io
be constant. I this ssction the efiects on the solution due to the variation
of /4 . /u_' and ) , all assumed to be proportional to 7 , will be

calculated and compared with the previcus results. That is,

A =consl. T |, then f=e . (*. 1)
The depeadence of S on 7 other than the above relation can be worked
cut in &« similar manner. In the present case o depends on 7 only,
but not on the local temperature 7 . Besides, A /a./ and ‘A ali have
the same dependence on 7 . Hence, assuming C, s o and Y »still

tc be constani, we may take

£ , o l:/;//t , ¢ .9,/(_/) all constant. (7.2)

Then the fundamental system, Eqgs. (1.15), (1.16), becomes

FoHE@-2) = Helo( ) [ e k2] e

W 9 I v’ / a9 24 2 Y+t
S8 s —_a — W =
2 * ¥~/ * £y [0’7 +(y-/)a~(,,«.£) d7 * 114 ) 2(y-1)

In the outer regicn, we substitute the same expansion Eq. (3. 4)
into Eqs. (7.3) and (7.4), then carry out the calculation in a way similar

to that described in § 3. The result is found tc be

R
—prd ’ ’ ; - a
W(E) = E wa(¥) EOFE) (;’f J[Wer 2yt Lt | 10(E) s
where
Vo s 3 £ ’ (/ a)(/-p)
A= ’3,?"-3_‘;_. -FprOrS s B = i /,4,) (7. 5a)

and 7(;) has the same expression as Eq. (3. 12b) up to terms of
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sigrificant order. Comparing this sclution with £q. (3.12), one can see
that for either /# 0(01/3)<W< el z » O OKW <L /=0 ") the correction
to the value of w at 7 due to the variation in A 1is at most of order
O(d%) . A correction of the same order also applies to ¢ . Thus
we may conclude that the effect c¢f varying M is rather unimportant in
this range.

In the transonic region, we can again try to obtain the solution

of Eqs. (7.3), (7.4) in the form of Eqs. (4. 1)-(4.3). This substitution

leads to the following equations:

4 w? O 7.6
(/e)a?,‘ew = = (/-f) (7.6
oI d 0@
(=€) 2 —(w'w’) =[(¥- (2- 7’"!_?_ W AL W™’
7 " 7 ¢ ) =[-1re(2-%)] ( ,6/;( )
_ lrp) +e(-3p) dw"” v s dw”
Tt w's e[( )+ & 7 753 ] AT
and
o(%)=/~«a (Y—/)w (5) —o (1-/)[“,\)*3»/ ‘,c,é. .4‘1'0] + 0@) (7, 8)
P & 2

Putting first €=0 in these equations and then comparring them with
the corresponding equations (4.5)- (4. 7) for the case of constant /1 . We
see that the efiect of varying A is the introduction of an extra term

to the second order equation, namely, the first term on the right hand
side of Eq. {(7.7). This again implies that to account for the effect of
variation in /a , the valuesof w and & should be subjected to a
correction term of order O(« 2/3) . It can also be showu that in the

s ).

inner supersonic region, its effect is also of ( (o For the case
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where the dependence of 4 on 7 is different from Eq. (7.1) (for
instance 4 =C ol , 7>0 ), the effect should qualitatively remain

the same.
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